碳减排目标的实现机制比较与选择
——基于数量型与价格型减排工具的模拟

董 梅, 李存芳*
（江苏师范大学商学院，江苏徐州 221116）

【摘 要】基于2012年微观层面的社会核算矩阵（SAM）表，本文构建动态可计算的一般均衡（CGE）模型，分别设计碳交易和碳税情景加入该模型，模拟中国2012—2030年的宏观经济效应和部门结构效应。研究结果表明：就宏观效应来看，2030年碳交易和碳税情景的碳强度分别比基准情景下降了24.24%和26.487%，分别完成碳减排目标的55.052%和59.349%；碳交易情景下消费、投资、出口和进口出现较大波动，碳税情景下这些指标小幅上涨。就部门经济效应来看，能源部门受政策情景影响最大，其次是制造业部门，其他部门受到的影响较小；碳交易情景对各部门增加值有抑制作用，碳税情景对各部门增加值影响较小。就部门减排效应来看，制造业部门的减排效应较显著；碳税情景的减排效应优于碳交易情景。总体而言，单一实施碳交易或碳税政策，不能完全实现碳减排目标，碳税政策相对温和，可以考虑两种减排政策配合实施，以减缓对经济系统冲击，并实现碳减排目标。

【关键词】碳减排目标；减排工具；碳交易；碳税；动态CGE模型

【中图分类号】F205
【文献标识码】A
【DOI】10.16868/j.cnki.1674-6252.2020.04.120

引言

国际社会对气候变化问题的重视程度不断提升，中国也高度重视这一全球性问题，并于“十一五”时期开始实施碳排放强度控制。在2015年巴黎气候变化大会上，中国政府承诺到2030年碳强度比2005年下降60%~65%，非化石能源占一次能源消费比重（以下简称非化石能源比重）达到20%左右。为完成该目标，政府需构建符合中国市场经济特征的长效减排机制，在实现碳减排目标的同时，推动经济平稳健康发展。在评估气候变化和环境质量中，各国对减排工具的选择和覆盖范围有较大分歧。不同减排政策工具会产生的经济效应，并将实现不同的减排目标。现阶段，以碳排放权交易为主的数量型减排工具，和以碳税为主的数量型减排工具在诸多国家和地区得到应用，各国依据国情，侧重选择其中一种或二者协调配合，以提高减排效率。目前，中国的碳排放政策正在积极地由行政约束型向碳交易机制转变，并积累了可贵的减排经验，但也显现出碳交易机制构建难度大，可能发生市场失灵等问题。在这一背景下，中国实施单一碳交易或单一碳税政策能否实现碳减排目标？宏观上，两种政策对未来经济将产生哪些影响？微观上，各部门会受到哪些冲击？本文拟通过明确这些问题，对两种政策工具的经济效应和结构效应进行预判，明确各自优缺点，为碳减排目标实现机制的比较与选择提供有益参考。

1 文献综述

碳减排目标的实现机制比较与选择——基于数量型与价格型减排工具的模拟

2 模型构建与情境设计

2.1 动态 CGE 模型的构建

2.2 碳交易情景设计

需要说明的是，2017 年底全国碳排放交易体系正式启动，但目前仍处于基础建设阶段，还需一段时间才能实现碳市场现货交易。本文以 CGE 模型为基础，仅从理论视角评价碳交易政策的影响，对全国碳市场配额总量、确定分配原则、分配方法、配额分配收益管理等细节不做详细讨论。

2.2.1 碳交易覆盖部门

本文各部门碳排放值均采用《2006 年 IPCC 国家温室气体清单指南》中固定源燃烧计算碳排放的方
法，即将能源消费量与省域排放因子相乘获得。参照2016年1月国家发展改革委提出全国碳交易市场将覆盖的八大重点排放行业分别与CGE模型中的10个部门对应（表1）。其中，与石化行业对应的有原油（占2015年总碳排放0.81%）；成品油（2.08%）；化学产品（12.43%）；与能源行业对应的有煤炭（2.46%）；天然气（0.12%）；与建材行业对应的有非金属矿物制品（9.77%）；与钢铁和有色行业对应的有金属冶炼和压延等（24.4%）；与造纸行业对应的有造纸印刷和文教等（1.45%）；与航空部门对应的是交运仓储等（8.27%）；此外还有电力（3.63%）。以上10个部门2015年碳排放总量为62.03亿t，占总碳排放的65.41%。

2.2.2 确定碳排放总配额

依据2030年碳强度比2005年下降60%为目标，可指导出2012—2030年的碳排放总配额（图1），其过程为：第一步，推算2016—2030年的碳排放约束。首先，设定预测期的GDP增长率，由此推算该时期实际GDP（2012年价格GDP）的预测值；其次，设定预测期碳强度匀速下降，推算预测的目标碳强度；最后，结合实际GDP预测值，推算出2016—2030年的碳排放约束（aim_TGHGco2）。第二步，推算10部门碳排放配额。首先，假设\(\phi_k\)在2012—2030年固定不变，均以2015年比重为准，即\(\sum_k \phi_k = 0.654\)；则各年碳排放配额总量为aim_TGHGco2×\(\sum_k \phi_k\)；其次，计算10部门各自的配额：

\[
L_{i,k} = \text{aim_TGHGco2} \times \sum_k \phi_k \quad k = 1,2,\ldots,10 \tag{1}
\]

式（1）表明，在2012—2030年，通过控制10个重点部门的碳排放，期望碳排放总量不超过aim_TGHGco2，则能够实现碳减排目标。10个部门

<table>
<thead>
<tr>
<th>年份</th>
<th>纸印和文教</th>
<th>化学产品</th>
<th>非金属矿物制品</th>
<th>金属冶炼和压延</th>
<th>交通仓储</th>
<th>煤炭</th>
<th>原油</th>
<th>成品油</th>
<th>天然气</th>
<th>电力</th>
<th>10部门合计</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>1.348</td>
<td>11.550</td>
<td>0.078</td>
<td>22.679</td>
<td>7.691</td>
<td>2.284</td>
<td>0.753</td>
<td>1.932</td>
<td>0.110</td>
<td>3.373</td>
<td>60.799</td>
</tr>
<tr>
<td>2014</td>
<td>1.365</td>
<td>11.693</td>
<td>0.191</td>
<td>22.960</td>
<td>7.786</td>
<td>2.313</td>
<td>0.762</td>
<td>1.955</td>
<td>0.111</td>
<td>3.415</td>
<td>61.552</td>
</tr>
<tr>
<td>2016</td>
<td>1.432</td>
<td>12.275</td>
<td>0.864</td>
<td>24.101</td>
<td>8.173</td>
<td>2.428</td>
<td>0.800</td>
<td>2.053</td>
<td>0.117</td>
<td>3.585</td>
<td>64.611</td>
</tr>
<tr>
<td>2018</td>
<td>1.550</td>
<td>13.280</td>
<td>10.438</td>
<td>26.074</td>
<td>8.843</td>
<td>2.627</td>
<td>0.866</td>
<td>2.221</td>
<td>0.127</td>
<td>3.879</td>
<td>69.902</td>
</tr>
<tr>
<td>2020</td>
<td>1.654</td>
<td>14.171</td>
<td>11.138</td>
<td>27.825</td>
<td>9.436</td>
<td>2.803</td>
<td>0.924</td>
<td>2.370</td>
<td>0.135</td>
<td>4.139</td>
<td>74.596</td>
</tr>
<tr>
<td>2022</td>
<td>1.721</td>
<td>14.744</td>
<td>11.589</td>
<td>28.949</td>
<td>9.818</td>
<td>2.916</td>
<td>0.961</td>
<td>2.466</td>
<td>0.141</td>
<td>4.306</td>
<td>77.610</td>
</tr>
<tr>
<td>2024</td>
<td>1.774</td>
<td>15.203</td>
<td>11.949</td>
<td>29.851</td>
<td>10.123</td>
<td>3.007</td>
<td>0.991</td>
<td>2.542</td>
<td>0.145</td>
<td>4.440</td>
<td>80.027</td>
</tr>
<tr>
<td>2026</td>
<td>1.809</td>
<td>15.504</td>
<td>12.186</td>
<td>30.441</td>
<td>10.324</td>
<td>3.066</td>
<td>1.011</td>
<td>2.593</td>
<td>0.148</td>
<td>4.528</td>
<td>81.609</td>
</tr>
<tr>
<td>2028</td>
<td>1.819</td>
<td>15.589</td>
<td>12.253</td>
<td>30.608</td>
<td>10.380</td>
<td>3.083</td>
<td>1.016</td>
<td>2.607</td>
<td>0.149</td>
<td>4.553</td>
<td>82.057</td>
</tr>
<tr>
<td>2030</td>
<td>1.796</td>
<td>15.388</td>
<td>12.095</td>
<td>30.216</td>
<td>10.247</td>
<td>3.044</td>
<td>1.003</td>
<td>2.573</td>
<td>0.147</td>
<td>4.494</td>
<td>81.003</td>
</tr>
</tbody>
</table>

注：各指标在2012—2030年单调递增，为表述简洁，本表仅列出偶数年的推算值。
2.2.3 碳交易情景设计
设定碳交易情景的方程如下:
$$
PA_t' \cdot QA_t' = PVA_t' \cdot QVA_t' + PINTA_t' \cdot QINTA_t' + pc' \cdot (GHG_{CO_2} - \gamma' \cdot LC_t')
$$
式 (2) 中, PA_t' 和 QA_t' 分别为第 t 期的生产价格和数量, PVA_t' 和 QVA_t' 分别为资本—劳动力合成束的价格和数量, $PINTA_t'$ 和 $QINTA_t'$ 分别为中间投入的价格和数量, pc' 为第 t 期配额的竞价拍卖价格。式 (3) 中, GHG_{CO_2} 表示实际碳排放, LC_t' 表示实际配额。

2.3.1 碳税征收设计
在能源—碳排放模块中加入碳税内容:
$$
TCTAX_{t} = TC_{t} + TC_{a} + TC_{h}
$$
式 (4) 中, $TCTAX_{t}$ 为第 t 期碳税总额, TC_{t} 为第 t 期碳税的从量税税率 (单位: 元/吨), TC_{a} 和 TC_{h} 分别为第 t 期能源部门和居民的碳税。征收碳税对模型系统产生以下三方面影响: 第一, 提高能源商品的价格; 第二, 降低居民可支配收入; 第三, 增加政府税收。

2.3.2 碳税返还设计
本文设定政府将碳税收入通过降低所得税率的方式返还给企业和居民, 使其具有环境改善和增加社会福利的“双重红利”。经过多种方案比较, 最终选定 $tc=60$ 元/吨, 并进行碳税返还为最终碳税方案, 该方案减排效果较好且对经济系统冲击最小。

3 模拟结果及分析
3.1 基准情景下宏观经济和碳排放指标预测
基准情景显示无碳减排政策下, 宏观经济和产业发展的趋势。通过表 2 可知, 2012—2030 年各项宏观经济指标都呈现稳定增长。

<table>
<thead>
<tr>
<th>年份</th>
<th>实际 GDP (2012 年价格) / 万亿元</th>
<th>消费 / 万亿元</th>
<th>投资 / 万亿元</th>
<th>出口 / 万亿元</th>
<th>进口 / 万亿元</th>
<th>总碳排放 / 亿吨</th>
<th>碳强度 (t/万元)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>68.274</td>
<td>36.077</td>
<td>21.963</td>
<td>17.807</td>
<td>18.289</td>
<td>112.965</td>
<td>1.655</td>
</tr>
<tr>
<td>2018</td>
<td>75.269</td>
<td>39.836</td>
<td>23.150</td>
<td>20.729</td>
<td>22.228</td>
<td>124.487</td>
<td>1.655</td>
</tr>
<tr>
<td>2020</td>
<td>82.988</td>
<td>43.910</td>
<td>26.241</td>
<td>23.042</td>
<td>23.814</td>
<td>137.179</td>
<td>1.653</td>
</tr>
<tr>
<td>2024</td>
<td>100.873</td>
<td>53.471</td>
<td>31.258</td>
<td>29.520</td>
<td>30.738</td>
<td>166.520</td>
<td>1.651</td>
</tr>
<tr>
<td>2026</td>
<td>111.213</td>
<td>59.019</td>
<td>34.110</td>
<td>33.094</td>
<td>34.803</td>
<td>183.401</td>
<td>1.649</td>
</tr>
<tr>
<td>2028</td>
<td>122.817</td>
<td>65.111</td>
<td>38.099</td>
<td>37.009</td>
<td>38.951</td>
<td>201.924</td>
<td>1.647</td>
</tr>
<tr>
<td>2030</td>
<td>135.192</td>
<td>71.821</td>
<td>43.134</td>
<td>41.862</td>
<td>43.966</td>
<td>222.267</td>
<td>1.644</td>
</tr>
<tr>
<td>年均增速</td>
<td>5.001%</td>
<td>5.040%</td>
<td>4.554%</td>
<td>6.310%</td>
<td>6.503%</td>
<td>4.962%</td>
<td>-0.037%</td>
</tr>
</tbody>
</table>

注: 本表仅列出偶数年的指标值; “年均增速” 是按照 2012—2030 年指标计算, 并非按偶数年计算。
万亿元，投资由 2012 年的 19.35 万亿元上升到 2030 年的 43.134 万亿元。就消费和投资分别占实际 GDP 比重的变化而言，消费比重由 2012 年的 52.77% 上升至 2030 年的 53.13%，投资比重则由 34.45% 下降至 31.9%，说明投资与消费对经济增长贡献的差距正在逐渐拉大，这与中国强调扩大内需、促进城乡居民消费的宏观经济战略是一致的。

就对外贸易来看，出口和进口不断增加，且两者走势非常接近。其中，出口由 2012 年的 13.915 万亿元逐步上升至 2030 年的 41.862 万亿元，同期的进口由 14.145 万亿元逐步上升至 43.966 万亿元，且存在少量贸易逆差。由指标增长速度来看，出口和进口年均增长率分别为 6.31% 和 6.50%，高于实际 GDP、消费和投资的增速，说明未来的国际贸易将快速发展。

就碳排放来看，基准情景下总碳排放由 2012 年的 92.96 亿吨上升至 2030 年的 222.267 亿吨，该时期碳强度仅有微量下降。总碳排放年均增加 4.962%，与实际 GDP 几乎同步增长，而碳强度基本不变。可见，若不采取任何碳减排措施，中国未来面临的环境压力将会十分严峻。

3.2 碳交易与碳税情景的宏观效应分析

碳交易与碳税情景下，宏观各指标与基准情景相比较的变动情况如表 3 所示。

就实际 GDP 变动来看，2012—2030 年碳交易和碳税政策下该指标变动都很小，可认为实际 GDP 基本不受影响。这一结论与以往文献认为碳减排政策对实际 GDP 产生负向冲击的结果不同，这是由于本文模型设定以经济适度增长为重要前提，各减排政策的模拟影响主要表现在结构变化方面。

就消费和投资的变化来看，2012—2030 年碳交易情景下消费平均下降 0.7226%，投资平均上升 0.0196%；碳税情景的消费和投资分别平均上升 1.7226% 和 4.3976%，并有显著的逐年增加趋势。消费和投资变化都与综合国内商品销售价格（以下简称销售价格）的变动有关，碳交易和碳税情景都会推动销售价格上涨，且碳交易情景的销售价格涨幅高于碳税情景。就碳交易而言，由于排放配额限制，政策覆盖部门以减排成本为决策，碳交易情景下出口和进口平均各增加 4.962%。这些变动的原因是，碳交易情景下商品销售价格涨幅较大，同向影响出口价格，抑制出口；碳税情景下商品销售价格涨幅较小，对出口影响较小。

就碳强度的变动趋势来看，碳交易和碳税情景的减排效果逐年增加，到 2030 年，两政策情景的碳强度分别比基准情景下降 24.24% 和 26.487%。两种政策情景的减排效果可结合表 4 分析。

<table>
<thead>
<tr>
<th>年份</th>
<th>实际 GDP</th>
<th>消费</th>
<th>投资</th>
<th>出口</th>
<th>进口</th>
<th>碳强度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>-0.002%</td>
<td>0.000%</td>
<td>-1.240%</td>
<td>0.011%</td>
<td>-25.649%</td>
<td>-6.183%</td>
</tr>
<tr>
<td>2014</td>
<td>-0.008%</td>
<td>-0.006%</td>
<td>-1.092%</td>
<td>0.507%</td>
<td>-3.939%</td>
<td>-5.603%</td>
</tr>
<tr>
<td>2016</td>
<td>-0.002%</td>
<td>0.002%</td>
<td>-1.242%</td>
<td>0.697%</td>
<td>2.006%</td>
<td>-0.449%</td>
</tr>
<tr>
<td>2018</td>
<td>-0.003%</td>
<td>0.003%</td>
<td>-1.237%</td>
<td>1.000%</td>
<td>1.697%</td>
<td>-0.778%</td>
</tr>
<tr>
<td>2020</td>
<td>-0.002%</td>
<td>0.004%</td>
<td>-1.269%</td>
<td>1.351%</td>
<td>2.517%</td>
<td>-0.294%</td>
</tr>
<tr>
<td>2022</td>
<td>-0.001%</td>
<td>0.005%</td>
<td>-0.014%</td>
<td>1.801%</td>
<td>4.078%</td>
<td>-0.193%</td>
</tr>
<tr>
<td>2024</td>
<td>-0.001%</td>
<td>0.008%</td>
<td>-1.307%</td>
<td>2.299%</td>
<td>1.809%</td>
<td>0.979%</td>
</tr>
<tr>
<td>2026</td>
<td>-0.002%</td>
<td>0.011%</td>
<td>-1.254%</td>
<td>2.827%</td>
<td>1.916%</td>
<td>2.885%</td>
</tr>
<tr>
<td>2028</td>
<td>-0.006%</td>
<td>0.019%</td>
<td>-1.141%</td>
<td>3.329%</td>
<td>-1.423%</td>
<td>21.892%</td>
</tr>
<tr>
<td>2030</td>
<td>-0.007%</td>
<td>0.029%</td>
<td>-1.090%</td>
<td>3.647%</td>
<td>-3.442%</td>
<td>37.198%</td>
</tr>
<tr>
<td>均值</td>
<td>-0.003%</td>
<td>0.008%</td>
<td>-1.072%</td>
<td>1.727%</td>
<td>0.019%</td>
<td>4.397%</td>
</tr>
</tbody>
</table>

注：本表仅列出有数年的指标值；“均值”是按照 2012—2030 年指标计算，并非按偶数年计算。

若在碳交易和碳税情景下，2030年的碳排放分别为168.378亿吨和163.442亿吨，对应碳强度分别为1.246吨/万元和1.209吨/万元，2030年碳强度比2012年分别下降27.558%和29.709%；若以碳强度下降50.058%为基准，可得到碳交易和碳税情景分别完成碳减排目标的55.052%和59.349%，这意味着单一实施一种市场型碳减排政策，只能实现减排目标的55%~60%。

表4 2030年碳交易和碳税情景的减排效果比较

<table>
<thead>
<tr>
<th>指标</th>
<th>目标情景</th>
<th>基准情景</th>
<th>碳交易情景</th>
<th>碳税情景</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030年碳排放（亿吨）</td>
<td>138.233</td>
<td>222.267</td>
<td>168.378</td>
<td>163.442</td>
</tr>
<tr>
<td>2030年碳强度（2012年价格）（吨/万元）</td>
<td>0.859</td>
<td>1.644</td>
<td>1.246</td>
<td>1.209</td>
</tr>
<tr>
<td>与2012年相比碳强度下降率</td>
<td>50.058%</td>
<td>4.419%</td>
<td>27.558%</td>
<td>29.709%</td>
</tr>
<tr>
<td>碳减排实现程度</td>
<td>—</td>
<td>8.736%</td>
<td>55.052%</td>
<td>59.349%</td>
</tr>
</tbody>
</table>

注：①“与2012年相比碳强度下降率”是将各情景碳强度与2012年碳强度相比。如(1-0.859/1.72)×100%=50.058%，说明该情景2030年碳强度比2012年下降50.058%；②“碳减排实现程度”是各情景碳强度下降率与50.058%相比的完成情况。如碳交易情景该指标为(27.558/50.058)×100%=55.052%，说明该情景2030年实现了碳减排目标的55.02%。

本文的预测与已有文献存在差异。如云小鹏等采用CGE模型预测2030年碳排放总量在不同情景下为120.05亿吨~144.57亿吨，王勇和王颖采用马尔科夫链预测2030年中国碳排放为110亿吨~118亿吨。以上文献与本文预测的差异，主要源于不同学者的模型结构、动态机制、基本假设、参数设置和基准年份不同所致。本文的预测主要考虑了2012—2030年中国碳排放总量在不同情景下的变化。

3.3碳交易与碳税情景的结构效应分析

碳减排情景下，将2012—2030年中国各行业对应数据取均值。如2012年碳排放总量在不同情景下为120.05亿吨~144.57亿吨，王勇和王颖采用马尔科夫链预测2030年中国碳排放为110亿吨~118亿吨。本文的预测与已有文献存在差异。如云小鹏等采用CGE模型预测2030年中国碳排放总量在不同情景下为120.05亿吨~144.57亿吨，王勇和王颖采用马尔科夫链预测2030年中国碳排放为110亿吨~118亿吨。以上文献与本文预测的差异，主要源于不同学者的模型结构、动态机制、基本假设、参数设置和基准年份不同所致。本文的预测主要考虑了2012—2030年中国碳排放总量在不同情景下的变化。

3.4对碳减排政策工具选择的进一步讨论

碳减排政策需要平衡碳强度下降和经济增长的双重目标，随着低碳经济转型、能源效率大幅提升和非

万亿美元。在碳减排政策情景下，各部门产出变动有以下特点：①大多数部门的产出都呈现下降，碳交易情景下产出总均值降幅(-2.528%)超过碳税情景(-1.827%)。②制造业部门群组的产出均值下降最多，其中部门产出下降均值最少，制造业部门群组在碳交易情景下各子部门产出降幅都在3%以内，碳税情景下多数子部门产出降幅都超3%；其他部门群组中，交运仓储等的产出下降显著，碳交易情景下其他行业产出降幅较大(-3.77%)，其余产出下降幅度较小。

就各部门消费来看，其他部门群组的平均消费最高(12.373万亿元)，其次是制造业部门群组(6.212万亿元)，能源部门群组的平均消费最小(4.804万亿元)。各部门在碳减排情景下的消费变动有以下特点：①消费总均值大幅上涨，碳交易情景下的平均消费涨幅(17.581%)超过碳税情景的涨幅(8.288%)。②能源部门群组的平均消费涨幅最大，碳交易和碳税情景下的平均涨幅分别为129.498%和19.742%；制造业部门群组在碳税情景下，平均消费上涨9.07%，在碳交易情景下平均下降2.835%；其他部门群组在两种政策情景下，平均消费均是下降的。③碳交易情景下原油(365.247%)和天然气(463.446%)消费的涨幅远超其他部门，碳税情景下煤炭(46.68%)和电力(62.76%)的消费涨幅也很可观。

就各部门碳强度来看，能源部门的平均基准碳强度最高(8.501吨/万元)，制造业部门群组(2.299吨/万元)和其他部门群组(2.136吨/万元)差距较小。在碳减排政策下，各部门的碳强度变动有以下特点：①碳交易情景下碳强度平均下降(2.528%)超过碳税情景(-1.827%)。②制造业部门群组的碳强度降幅最多，其他部门群组的平均降幅紧随其后；能源部门群组在碳交易情景下碳强度平均下降18.134%，但在碳交易情景下该指标上涨1.272%。③重点部门碳强度在碳税情景下呈下降趋势，电力、化学产品、非金属矿物制品、金属冶炼和压延等部门基准碳强度下降较大，碳交易情景下多数子部门产出降幅都在3%以内，碳税情景下多数子部门产出降幅都超3%；其他部门群组中，交运仓储等的产出下降显著，碳交易情景下其他行业产出降幅较大(-3.77%)，其余产出下降幅度较小。
表5 碳交易和碳税情景下各部门产出、消费与碳强度变动

<table>
<thead>
<tr>
<th>部门</th>
<th>产出</th>
<th>消费</th>
<th>碳强度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>基准 / 万亿元</td>
<td>交易变动</td>
<td>税收变动</td>
</tr>
<tr>
<td>煤炭</td>
<td>2.897</td>
<td>0.04%</td>
<td>-0.19%</td>
</tr>
<tr>
<td>原油</td>
<td>0.875</td>
<td>1.21%</td>
<td>-1.86%</td>
</tr>
<tr>
<td>电力</td>
<td>7.343</td>
<td>-3.17%</td>
<td>-3.82%</td>
</tr>
<tr>
<td>群组均值</td>
<td>3.697</td>
<td>-1.66%</td>
<td>-3.14%</td>
</tr>
<tr>
<td>食品和烟草</td>
<td>12.303</td>
<td>-2.14%</td>
<td>-3.19%</td>
</tr>
<tr>
<td>化学品</td>
<td>19.715</td>
<td>-2.45%</td>
<td>-3.89%</td>
</tr>
<tr>
<td>纺织品</td>
<td>6.207</td>
<td>-2.25%</td>
<td>-3.38%</td>
</tr>
<tr>
<td>纺织品加工鞋等</td>
<td>5.622</td>
<td>-2.16%</td>
<td>-2.92%</td>
</tr>
<tr>
<td>木材加工品和家具</td>
<td>3.216</td>
<td>-2.37%</td>
<td>-3.17%</td>
</tr>
<tr>
<td>造纸印刷和文教等</td>
<td>5.068</td>
<td>-2.13%</td>
<td>-2.92%</td>
</tr>
<tr>
<td>专用设备</td>
<td>5.004</td>
<td>-1.95%</td>
<td>-3.2%</td>
</tr>
<tr>
<td>交通运输设备</td>
<td>10.519</td>
<td>-2.14%</td>
<td>-3.65%</td>
</tr>
<tr>
<td>电气机械和器材</td>
<td>8.564</td>
<td>-2.54%</td>
<td>-4.57%</td>
</tr>
<tr>
<td>通用设备、计算机</td>
<td>14.603</td>
<td>-2.66%</td>
<td>-4.14%</td>
</tr>
<tr>
<td>医疗器械</td>
<td>0.944</td>
<td>-2.16%</td>
<td>-2.49%</td>
</tr>
<tr>
<td>金属制品</td>
<td>5.353</td>
<td>-2.31%</td>
<td>-3.57%</td>
</tr>
<tr>
<td>金属制品、机械等</td>
<td>1.192</td>
<td>-2.77%</td>
<td>-0.09%</td>
</tr>
<tr>
<td>农林渔产品服务</td>
<td>16.279</td>
<td>-0.49%</td>
<td>0.47%</td>
</tr>
<tr>
<td>金属矿采选产品</td>
<td>1.518</td>
<td>0.06%</td>
<td>-1%</td>
</tr>
<tr>
<td>非金属和其他矿采等</td>
<td>0.827</td>
<td>0.07%</td>
<td>-0.56%</td>
</tr>
<tr>
<td>水的生产和供应</td>
<td>0.258</td>
<td>-1.88%</td>
<td>-0.41%</td>
</tr>
<tr>
<td>建筑业</td>
<td>19.448</td>
<td>0.24%</td>
<td>-0.97%</td>
</tr>
<tr>
<td>交通运输设备</td>
<td>10.881</td>
<td>-3.1%</td>
<td>-2.31%</td>
</tr>
<tr>
<td>其他行业</td>
<td>53.316</td>
<td>-3.77%</td>
<td>-0.85%</td>
</tr>
<tr>
<td>群组均值</td>
<td>14.362</td>
<td>-1.31%</td>
<td>-0.86%</td>
</tr>
<tr>
<td>总均值</td>
<td>8.54</td>
<td>-1.82%</td>
<td>-2.52%</td>
</tr>
</tbody>
</table>

表6 碳交易与碳税政策工具的比较

<table>
<thead>
<tr>
<th>项目</th>
<th>碳交易</th>
<th>碳税</th>
</tr>
</thead>
<tbody>
<tr>
<td>政策</td>
<td>碳减排效果</td>
<td>碳减排效果</td>
</tr>
<tr>
<td>优势</td>
<td>目标可实现性强、可控制、可形成碳排放配额机制</td>
<td>全社会减排成本较低，可与国际碳交易市场接轨</td>
</tr>
<tr>
<td></td>
<td>公众可参与碳市场交易</td>
<td>政策实施成本低，可依托已有市场体系</td>
</tr>
<tr>
<td>本征收</td>
<td>碳减排效果</td>
<td>碳减排效果</td>
</tr>
<tr>
<td>特征</td>
<td>碳税对经济系统冲击大</td>
<td>对经济系统有自主调节</td>
</tr>
</tbody>
</table>
会成本节约方面有更大潜力。综合分析，在碳减排政策选择上，应以碳交易为主导政策，以碳税为辅助型政策，其对碳交易覆盖以外的碳排放增长较快的部门征收碳税，期限和税率均可依据碳交易的减排效果动态调整，也可对经济系统受到的负向冲击进行调整。

4 结论与启示

本文构建动态 CGE 模型，分别设计碳交易和碳税情景，模拟中国 2012—2030 年宏观经济、减排效果和部门结构的变动情况，得出以下结论：①就宏观效应来看，单一实施碳交易或碳税政策，只能实现超过一半的碳减排任务；②就部门结构变动来看，碳交易情景对经济系统的负向冲击较大，而碳税情景对经济系统的影响相对温和；③就减排效应来看，碳税情景的减排效应优于碳交易情景。

以上结论可以看出，碳交易和碳税政策工具各具优势，若将两种减排政策配合实施，能够在缓解对经济系统冲击的情况下达到更好的减排效果，并实现 2030 年减排目标。现阶段，中国正在大力推进全国统一碳市场的发展，但限于碳交易体系所涉及的企业层面有关碳排放的数据基础薄弱，碳排放核算工作进展迟缓，至今仍未实现碳配额的现货交易，全国碳市场推进受阻。基于此，得到以下政策启示：首先，应尽快将重点行业纳入碳交易体系，并实现碳配额现货交易。其次，以碳交易为主体政策，以碳税为辅助型政策，可适时采用碳税政策，将其作为碳交易机制的有效补充，两种碳减排机制在调控范围和价格调节上相互协调，能够更加有效地实现碳减排承诺，以实现减排目标。

参考文献

[22] MACKENZIE I A, OHNDORF M. Cap-and-trade, taxes, and
The Comparison and Selection of Realization Mechanism for Carbon Emission Reduction Goals: Based on Quantity-Based and Price-Based Emission Reduction Policy Tools Simulation

DONG Mei, LI Cunfang*
(Business School, Jiangsu Normal University, Xuzhou 221116, China)

Abstract: Based on the SAM table at micro-level in 2012, this study constructs a dynamic CGE model, adding carbon trading and carbon tax into this model, and then simulates macroeconomic effects and sectorial structure effects from 2012 to 2030 in China. There are three research results indicated in this paper. Firstly, from the macro-effect perspective, carbon intensity of carbon trading and carbon tax will respectively decrease by 24.24% and 26.487% compared with the baseline, which will respectively complete 55.052% and 59.349% of carbon emission reduction goals in 2030. Consumption, investment, import and export under the carbon trading scenario are greatly fluctuated, but these macroeconomic indexes are slightly increased under the carbon tax scenario. Secondly, in terms of the economic effect departments, the energy department is most affected by carbon emission reduction, followed by manufacturing department. However, other departments are affected slightly. The carbon trading scenario has restrained the added value of various departments, which has greatly impacted on the consumption of the crude oil and natural gas sectors. Thirdly, as for sectoral emission reduction effect, the emission reduction effect of manufacturing department is significant. Moreover, the emission reduction effect of carbon tax is superior to that of carbon trading. In a word, the single implementation of carbon trading or that of carbon tax policy cannot complete carbon emission reduction target. Besides, carbon tax policy is also relatively mild. So, two emission reduction policies are implemented interactively, which will reduce the impact on the economic system and achieve carbon emission reduction target.

Keywords: carbon emission reduction target; emission reduction tools; carbon trading; carbon tax; dynamic CGE model